HW assignment, week 10

due: Wednesday, Nov.-03, 2010 - before class

1. Achromatic Doublet

Design an achromatic doublet for a nominal focal length f = 200 mm for the center wavelength of the Na D doublet ($\lambda = 589.3$ nm) from 518:596 crown glass (n = 1.518, V = 59.6) and 617:366 dense flint glass (n = 1.617, V = 36.6). A positive lens is followed by a negative lens whose concave front face fits the convex back face of the L⁺. What are the curvature radii $R_1 = -R_2 = -R_3$ and R_4 of the lenses to obtain the target focal length of the pair?

With
$$\rho_1 = \left(\frac{1}{R_1} - \frac{1}{R_2}\right); \quad \rho_2 = \left(\frac{1}{R_2} - \frac{1}{R_3}\right) \text{ and } \frac{1}{f} = (n_1 - 1)\rho_1 + (n_2 - 1)\rho_2 \text{ we obtain}$$

 $\frac{\rho_1}{\rho_2} = -\frac{n_{2blu} - n_{2red}}{n_{1blu} - n_{1red}} = \frac{(n_{2ylw} - 1)f_{2ylw}}{(n_{1ylw} - 1)f_{1ylw}}$ by requiring $f_{red} = f_{blu}$, and therefore,

$$\frac{f_{2ylw}}{f_{1ylw}} = -\frac{n_{2blu} - n_{2red}}{n_{2ylw} - 1} \left/ \frac{n_{1blu} - n_{1red}}{n_{1ylw} - 1} \right| = -\frac{V_2}{V_1}$$

Hence, $f_{1ylw} = f(1 - V_2/V_1) = 200 \text{ mm} \cdot (1 - 366/596) = 77.2 \text{ mm}$ and

$$f_{2ylw} = f(1 - V_1/V_2) = 200 \text{ mm} \cdot (1 - 596/366) = -125.7 \text{ mm}$$

From $\frac{1}{f_1} = (n_{crown} - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right) = (n_{crown} - 1) \cdot \frac{2}{R_1}$ follows $R_1 = 2 \cdot 77.2 \text{ mm} \cdot 0.518 = 80.0 \text{ mm}$ and

from $\frac{1}{f_2} = (n_{flint} - 1) \left(\frac{1}{R_3} - \frac{1}{R_4} \right) = (n_{flint} - 1) \left(-\frac{1}{R_1} - \frac{1}{R_4} \right)$ follows

$$R_4 = -(n-1)\frac{f \cdot R_1}{R_1 + (n-1)f} = 2607.5 \text{ mm (remember that } f_2 < 0 !)$$

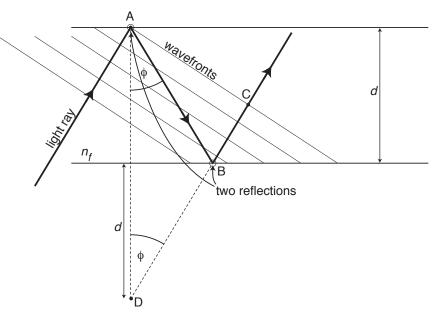
(5 pts)

HW assignment, week 10

due: Wednesday, Nov.-03, 2010 – before class

2. Propagated Modes in Optical Fiber

(a) Explain qualitatively, by sketching the geometry of a planar light guide, why there is a selection of transmitted modes in the angular directions of rays within the light guide.



Phase of wave at point A must match phase after two reflections at point **C**.

(b) Using the geometric argument from the sketch, derive the resonance condition that determines the distribution of modes.

Optical path {ABC} equals {DC}, $\overline{DC} = 2d \cos \phi$ \rightarrow resonance condition: $m\lambda = 2dn_f \cos \phi + 2\phi_r$ where ϕ_r is phase jump upon reflection.

3. Standing Wave I

(4 pts)

Use the complex representation to find the composite wave $E = E_1 + E_2$ that derives from

$$E_1(x,t) = E_0 \cos(kx - \omega t)$$
 and $E_2(x,t) = -E_0 \cos(kx + \omega t)$.

 $E(x,t) = E_0 \left(e^{i(kx - \omega t)} - e^{i(kx + \omega t)} \right) = E_0 e^{ikx} \left(e^{-i\omega t} - e^{i\omega t} \right) = -2iE_0 e^{ikx} \sin \omega t$

Remember $e^{ix} = \cos x + i \sin x$ to obtain $E(x,t) = -2iE_0(\cos kx \cdot \sin \omega t + i \sin kx \cdot \sin \omega t)$

The real part of this is $(-i^2 = 1)$: $E(x,t) = 2E_0 \sin kx \cdot \sin \omega t$

(4 pts)

(4 pts)

HW assignment, week 10

due: Wednesday, Nov.-03, 2010 - before class

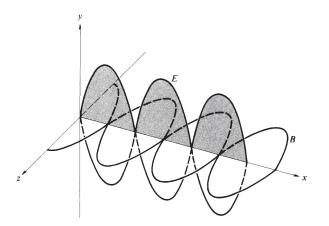
4. Standing Wave II

The solution of problem 4 is the standing wave, $\vec{E}(x,t) = 2\vec{E}_0 \sin kx \cdot \sin \omega t$ where \vec{E}_0 points in the direction of \hat{e}_y . Derive the field \vec{B} associated with \vec{E} and draw a sketch of the two fields over one wavelength λ .

From $\partial E/\partial x = -\partial B/\partial t$ it follows that

$$B(x,t) = -\int \frac{\partial E}{\partial x} dt = 2E_0 k \cos(kx) \int \sin(\omega t) dt = -2E_0 k / \omega \cos(kx) \cos(\omega t) \text{ and with } \frac{E_0 k}{\omega} = \frac{E_0}{c} = B_0$$

 $B(x,t) = -2B_0 \cos(kx) \cos(\omega t)$



5. Dispersion Relation in Plasma

(3 pts)

A plasma is a dispersive medium for EM waves with a dispersion relation described by

 $\omega^2 = \omega_p^2 + c^2 k^2$ where ω_p is the plasma frequency. Derive the phase and group velocities, v_{ph} and v_g , in the plasma as functions of ω and ω_p and show that $v_{ph} \cdot v_g = c^2$.

$$\omega^2 = \omega_p^2 + c^2 k^2 \quad \rightarrow \quad c^2 k^2 = \omega^2 - \omega_p^2; \quad \frac{ck}{\omega} = \sqrt{1 - \omega_p^2 / \omega^2}$$

$$v_{ph} = \frac{\omega}{k} = \frac{c}{\sqrt{1 - \omega_p^2 / \omega^2}}, \ v_g = \frac{d\omega}{dk} = 2c^2 k \cdot \frac{1}{2} (\omega_p^2 + c^2 k^2)^{-1/2} = \frac{c^2 k}{\omega} = c \cdot \sqrt{1 - \omega_p^2 / \omega^2}$$

 $v_{ph} \cdot v_g = c^2$